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ABSTRACT

A methodology for estimating physical tmrameters in a class of structural acoustic sys-

telllS is presented. The general model under consideration consists of an interior cavity which

is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic

patches are bonded to or embedded in the structure; these can be used both as actuators and

sensors in applications ranging from the control of interior noise levels to the determination of

structural flaws through nondestructiw_ evaluation techniques. The presence and excitation

of the patches, however, changes the geometry and material properties of the structure as

well as involves unknown l)atch parameters, thus necessitating the development of parameter

estimation techniques which are applicable in this coupled setting. In developing a framework

for apl)roximation , t)arameter estimation and implementation, strong consideration is given

to the fact that the input ol)erator is unbonded due to the discrete nature of the patches.

Moreover, the model is weakly nonlinear as a result of the coupling mechanism between the

structural vibrations and the interior acoustic dynamics. Within this context, an illustrating

model is given, well-posedness and approximation results are discussed and an applicable pa-

rameter estimation methodology is presented. The scheme is then illustrated through several

numerical examples with simulations modeling a variety of commonly used structural acoustic

techniques for system excitation and data collection.
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were visit, ing scientists at, the Institute for (:omputer Applications in Science and Engineering (I(:ASE),

NASA Langley Research (:enter, Hampton, VA 23(J_1.





1 Introduction

The recent success of piezoceramic materials as sensors and actuators in applications involv-

ing structural vii)rations has spawned intense study into questions regarding the modeling

of piezoceramic actuator/sensor interactions with underlying structures, the optimal design,

placement and number of actuators/sensors to be used, and the develol)ment of effective con-

trol strategies in a variety of environments. When bonded to or embedded in a thin structure

(beam, [)late or shell), piezoceramic patches (terive their actuating capacity from the piez-

electric property that an induced voltage produces a strain in the material thus leading to

the potential for i)ro(lllcing in-plane forces an(t/or moments when the patches are mounted in

pairs. (k)nversely, their sensing capabilities are due to the dual piezoelectric effect; namely, a

mechanical force leads to the generation of a proportional voltage across the element which

can then be used to measure accumulated strain.

tlowever, the bonding or eml)ed(ling of patches in the underlying structure changes not

only the geometry of the structure but also physical properties such as the density, stiffness,

Poisson ratio and damping coeificients, when in_lee(I, many of these parameters are unknown

even for the homogeneolls, 11hiform ]L(,st structure material. This necessitates the (levelopment

of effective parameter identification methods lo })e used when estimating system parameters in

applications sllch as experimental mo(lel validation, the determination of optimal placement

an({ nunll)er of patches, the use of piez(,ceramic patches in nondestructive evaluation (NI)E)

techniques, and the iml)lelnentation of model-t)ased control schexnes. We point out thal the

estimation of physical parameters in this setting differs from that considere(I in much of the

previous literature (see [6] and the references 1herein) in that here the patch contributions

to the system lead to unbounded (discontinuous) input and output opera.tors due to the fact

that the patches cover only discrete portions of the structure.

[)aramel.er estimation methods for dislril)uted parameter systems involving unboun(h'(I

oI)erators have t)een develol)ed and tested in the case in which piezoceramic patches are used

as sensors and actuators when bonded to a transversely vibrating 1)earn [15, 16]. There, fit-

t(,-(lala terhniques involving t)I)E m(,(lels were developed which could be used to estimate

unklaoWn t)eam parameters given various (lata forms. Moreover, in that setting, reslllts l)er -

raining t.o convergence and continuous depen(tence on data were obtained in a variety of cases

involving physically tractable methods for exciting the system and measuring data.

In this work, we develop a.ll analogolls methodology which can be used for estimating

physical parameters in structural acoustic systems. In the systems of interest, an exterior

noise source is separated from an interior cavity by a thin elastic structure (a beam, plate

or shell). As energy is transferred from the exterior field to the structure, vibrations develo t)

whicll then lea.d to unwanted interi()r noise through acoustic/structure interactions. (!ontr()l of

this unwanted interior noise is accomplished t.ltrough sensing and actuating via 1)iezoceramic

I)al.ches which are bonde(l to the structure. Before model-based control scllemes can 1)e imple-

n/ente(t_ however, the physical ])arameters of the structure (which now includes the patches)

must be estimated fl'om (lata which is collected both on the structure and from the acoustic

response in the enclosed cavity. Although similarities exist I)etween the l)rot)lem of estimat-

ing physical parameters fin" the is(,lated strltcture and that involving the structural acoustic

system, the hyperb(,li(" contril)uti(ms dlle 1o the acoustic component sufficiently change the



problemdynamicssoasto warrant in-depth study of techniquesfor the latter coupledsystem.
Finally, wenote that although the initial impetus for developingdistributed parameteresti-
mation techniquesfor structural acousticsystemswasmotivated by model-basednoisecontrol
considerations,the sameteclmiquescall be usedwhen performing vibration analysisor using

NDE methods to determine structural flaws in these coupled systems.

The structural acoustic problem used here to motivate and illustrate the development of

an appropriate parameter estimation methodology consists of a 2-D enclosed cavity which is

separated from tile perturbing exterior noise field by a thin beam. This model represents

a 2-D slice from a a-D model for several experimental apparata being used in tile Acoustics

Division, NASA Langley Research Center, to test modeling, paraineter estimation and control

strategies. We add, however, that the methodology being presented is equally valid for es-

timating parameters in many 3-D models representing various experimental setups currently

in use (see tile models in [9, 10]). This 2-D model was chosen simply because it simplifies

the discussion and more clearly illustrates the process involved in developing the parameter

identification techniques.

The model being used to illustrate tile methodology is weakly nonlinear due to the manner

in which the structural vibrations couple with the interior acoustic fields. While linearization

provides a very good approximation to tile system dynamics (see [1]), we retain tile non-

linearity here so as to illustrate some of the general analytic assumptions which are made

when extending well-posedness and parameter convergence results for the corresponding lin-

ear problem to a weakly nonlinear problem of this type. This also facilitates the demonstration

of numerical techniques which can be used when simulating, testing and implementing the

parameter estimation scheme in the nonlinear problem. In discussing parameter estimation

methods for structural acoustics problems of this type, our emphasis is on the formulation of

the problem in a manner which is conducive to approximation and implementation both in

the linear and nonlinear forms as well as under a variety of damping assumptions.

In the second section of this presentation, a model for the 2-D system being used to

illustrate the parameter estimation method is presented. Details regarding the modeling of

the acoustic and structural components as well as coupling conditions are given, and care is

taken to motivate tile assumptions which lead to various damping conditions in tile system

model. In formulating the strong form of the system model, details are also given regarding

the interactions between the piezoceramic patches and the underlying structure (beam) as

well as tile weakly nonlinear interactions between the beam and the interior acoustic field. To

provide a fornmlation which is conducive to approximation in the context of unbounded input

operators as well as facilitates the discussion of well-posedness results, the weak form of tile

system equations is then developed and posed ill terms of sesquilinear forms and the bounded

operators which they define. Finally, we show that the solution trajectories can be expressed

in terms of a semigroup on an appropriate space and within this framework, the assumptions

underlying the well-posedness results for tile linear and nonlinear problems are discussed.

A discretization method suitable for simulations and tile implementation of the parameter

estimation method is outlined in Section 3. This discussion is kept relatively brief since details

regarding the corresponding finite dimensional system for the linearized problem can be found

in [1]. However, the section does provide additional details concerning tile discretization of the

nonlinear component of the operator and a brief algorithm for carrying out this discretizetion

is included.



A parameter estimation schemesuitable for data consistingof displacement,velocity or
accelerationmeasurenlentson the 1)earn,voltagemeasurementsfrom tile patches,or pressure
measllren/entinside the cavity, is presentedin Section 4. Assumptionson tile form of the
miknown t)arametersare discussedand conditions leading to convergenceand continuous
dependenceon data results for the linear and nonlinearproblemsareoutlined.

In Section5, numericalexamplesdemonstratingtile parameterestimation techniqueswith
a variety of data types and methods for exciting the system are presented. Specifically,
examplesaregiven in which the forceto the systemis provided by a numerically simulated
acoustic source, simulated voltage inputs to the patches,and a simulated hammer impact
to the beam. The simulateddata under comparison in the examples consists of acceleration

values of the beam, w)ltage (accumulated strain) values from the patches, and voltage values

in conjunction with interior acoustic pressure values. The conclusions from this study and

physical considerations concerning th_ implementation of the method are summarized in tile

final soction of tile Imper.

2 System Model

The model of interest consists of an exterior noise source which is separated from an interior

cavity Q(t) by a common elastic 1)(mndary F0(t) that is modeled by an Euler-Bernoulli beam

as depicted in Figure 1. The beam is assumed to have length a, width b and thickness h.

The Young's modulus, mass density (in mass per unit volume) and damping coefficient for

the homogeneous beam are denoted by E_, Pb and CDb, respectively. Due to the nature of the

exterior forces and the manner in which the patches are excited, we will be considering only

transverse vibrations w(t, my.

Bonded to the beam are piezoceramic patches which are mounted in pairs as depicted

in Figure 1. In this discussion, it is assumed that tile patches have thickness T, width b,

Young's modulus Ep_, density Pv_, and damping coefficient cup_. Moreover, it. is assumed

that tile bonding layers for each patch have equal thicknesses, Young's moduli, densities and

damping coefficients, and these parameters are denoted by The, Ebe, pbe and cube, respectively.

\¥e emphasize that these assmnptions are made solely' for clarity of presentation, and similar

results can t)e obtained ill an analogous manner for the more general case in which the patches

and bonding layers haw" differing thicknesses and material properties (see, for example, [12]).

Finally, we assmne that inside the cavity, there is a region _ = Ui=IlINR i)i which provides

a first approximation to the interior objects (eg., passengers, seats, storage compartments)

which disrupt and damp tile interior acoustic fields. This region is assumed to have positive

measure and is taken to be small as compared to f_(t) (see Figure 1 where NR = 4).

2.1 Acoustic Component

We consider first the acoustic wave dynamics inside the cavity f_(t). The variables of interest

to us are the pressure P, density p, and the velocity U, each of which can lye represented in
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terms of a mean and fluctuating component

t,(t, = +

p(t,£) = po(£) + _(l,,F)

(here we have taken £ = (z, 9) and are assuming that the rate of sound travel is sufficiently

rapid so that little heat transfer takes place). For the range of magnitudes involved in these

problems (< 140 dB), it is usual to assume linear relations when considering constitutive laws

and force balancing [20!, and we make that assumption throughout the analysis which follows.

In the region f_(t)/f_, air damping is omitted due 1.o the relatively small dimensions of tile

type of experimental cavities being simulated. Hence in that region, an increase in pressure

brings about a proportional strain with the ratio defined as the bulk modulus of elasticity E l
where

-p

El- V.Y or p=-EfV.._' (2.1)

(Y(t, aT) denotes the displacement of the center of gravity of an infinitesimal element of the

medium and satisfies Yt = g). On the other hand, the material objects lumped in (-_ will

provide some medium daml)ing and here we assume that a change in pressure yields

l' = -P;V. ,_'- ,-iV-._ (2.")

where /_ and (t denote tile bulk modulus of elasticity and damping coefficient of the medimn

in _). We point out that this use of a generalized llooke's law in which stress is 1)roport.ional to



a linear conlbination of strain and strain rate is done under tho assumption thal relatively low

acoustic frequencies are ex(:it.(_(t (< 1000 tlz), and is similar to the constitutive law h'ading i:()

IKelvin-Voigt. (Iamt)ing of vii)rations in (dasl.i(" materials. \Ve also empha.size that this (taml)in_

modol sho,lhl t)e considered as a tirsl, al)l)roxilnation to 1.11(,actual acollslic (laml)ing n/(,cllanisln

in the medium _, and del)emting on tho specitic materials involved, tho ma.nnor of acoustic

excitation, and tho geometry of the physical system, more comprehonsivo models may t,-

requil'_,_l t.o accuratoly describe 111o medium damping.

[cot'co balancing in the acoustic cavity yidds 1;11orelation (the Euler oquation)

0 2Y

¢.))t2 - Vp (2.:/)

_vh('l'("

f ps ,
P.

denotes the eqllilibrilm/density of the medium ((2.:1) is equivalent 1.o the linearizod nloment, um

equation in fluid dynamics). By laking two time derivatives of (2.1) and (2.2), the divergem_c

of (2.3), a.tl(l eliminat.in_; cross terms, one arrives at.

°2P EsAj, , .7 c

012 Pf (2..i)

02p k2 d
-- = =-Ap+zAp_ , YE(_.
O& p p

Taking the cm'l of the momentum equation (2.3) and noting that t7 = Yt we ol,ia.in _(V ×

p.,_) = 0. Hence the vorticity & = V x pot7 is constant in time in _(t). Under the assmnption

that the initial vorticity ,,_(0) is zero, we may conclude that _ × p0d = 0 for all time or thai

the flow is irrotational in [_(l). Thus in _(t), there exists a scalar velocity potential O such

that

p0_7 = - V0 • (2.5)

The [troy is more complex Ilear and in th(, region (_ as a res,llt of t.h_" viscous effects an,{

me(liLm_ da.mping. This can potentially lead 1.o rotational componouts in the acoustic fiohl

which in general necessitatvs the uso of a voctor potential. As a first al)lm_ximal.ion, howeww,

we are assuming that the rotational componetlts near and in _) are uegligiblo and a relatiou

of the form (2.5) will be used thro_@lout tho acoustic cavity _(t).

S_l])stit.ut.ing (2.5) into the momeni._m_ equation (2.:t) we find

V =0,

t)o
which implies that p = _ since m_ a('o_lsl.ic som'ces or sinks are l)rosenl in _(Z). [Tse of this

pressure' oxpression (actually pc -- 0,) afi.er differentiation i_ time once in equations (2.1),

(2.2) t l_e,_ 5'iolds

i)l 2 Pf

L ('ti)_O- HA 0 .4-_A<_ , :7_(_.
0t 2 p P



Finally, hardwall boundary conditions are assumed since the experimental apparatus being

modeled has concrete walls. With fi denoting the outward unit normal to the cavity and c2(2)

and d(aT) denoting the speed of sound and damping coefficients given by

the acoustic response can be modeled as

°_ - c2A_+ aA_, , (x, y) e e(_) ,t > 0,
Or2 (2.6)

V¢.h=0 , (x,y) cF,t>0.

We emphasize that this model was deriw_d under the assumption that the only acoustic

damping in the cavity occurs in the region _ and hence d(:_) = 0 in the rest of the chamber,

i.e. for 2" C f_(t)/_. Moreover, we have assumed that the flow is irrotational in the region

fl(t).

2.2 Beam Component

Through force and moment balancing, the equation of motion for the transverse displacements

w of the beam are found to be

pwu+--_x2 (t,O'Z'A4"x)=-_t(t,x,w(t,x))+ f(t,x) x0<x<a, t>0,

Ow Ow a) 0 t > 0 ,_(t,o) = 7x (t,o) = _(t,_) = -_x(t, =

where M is the total beam moment, f is the force due to pressure froln the exterior noise fieht

and 6_(t,x,w(t,x)) is the backpressure due to the ensuing acoustic waves inside the cavity'

(this latter term is in general nonlinear since its effect occurs on the surface of the vibrating

beam). For pairs of patches having edges .rl and x2, the density of the structure is

p(x) = pbhb + 2b (pbeTb: + pp_T) X:;_(x) (2.7)

where the characteristic function

1 , xl <_x<_x2)%_(x)= 0 , otherwise

localizes the patch effects between the endpoints x_ and x2 (see [11, 12] for details).

The general beam moment

M(t,x) = M(t,_)- _¢v(t, x)

consists of an internal component M, depending on material and geometric properties of the

beam and patches, and an external component Mv_ (the control term) which results from the

activation of the patches through an applied voltage (see Figure 2).



For a beamundergoingpure bendingmotion with out-of-phaseexcitation of the patches,
the internal and external momentsaregiven by

_) 2 W (_3 W

M(t,.) = +

where V is tile voltage into the patches. As shown in [11], the stiffness, damping and control
constants for the combined structure are

E h3b 2b
=  Tg.)+ 7

= + 5- (2.s)

ICs = Ep_bd3_(h + 27_,e + 7') .

The constants a3_e and a3p¢ given by a,%: = (h/2-4- Tb_)3-(h/2) 3 and a3p_ = (h/2 + Tb:+ T) 3-

(h/2 + The) 3 result from the integration of stresses through the bonding layer and patch, and

d31 is a piezoceramic constant which relates tile amount of strain produced in the patch to

the level of voltage being applied.

At this point it. is worth commenting further on the damping term CDp¢ which is taken to

be a combination of the Kelvin-Voigt damping coefficient for tile patch and tile damping which

results from tile production of current when the structure vibrates. This latter contribution to

tile damping results from the piezoelectric effect of the patches which dictates that a voltage

is produced when the patch is subjected to in-t)lane strains. Ihlder tim assumption that tile

Kelvin-Voigt (material) and electrical damping have approximately the same types of effect

in the patch, we hay(, combilw(t tim two into the coefficient CDp_ which must be considered to

be unknown and like the other l)arameters, must ultimately be estimated using data fitting

techniques with experimental data when considering actual applications. We also point out

that the expression (2.8) can easily, be generalized to include the possibility of differing material

properties in tile two patches or bonding layers (again, see [11, 12]).

Tile fact that the patches generate a voltage when strained implies that they can be used

as sensors as well as actuators. Specifically, the voltage produced by the patches when tile

beam bends is

(2.9)

where the sensor constant PCs depends upon piezoelectric material properties as well as tile

geometry and size of the patch (see [18]). Hence the voltage provides a measure of accumulated

strain ill the beam (see Figure 2) thus enabling the patch to serve as a sensor in a variety of

applications involving the nleasurcment of beam vibrations.
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2.3 Coupling Conditions

In the model discussed thus far, tile structural and internal acoustic responses are coupled

through tile backpressure gSt(t , x, w(l, a:)) on tile surface of tile beam. A second coupling

equation is the continuity of wqocity (or momentum) condition

w,(t,.) = o < < ,, > o
P/

which results from the assumption that the beam is impenetrable to air. We point out that the

velocity condition provides a form of damping to the beam which is similar to that obtained

with the incorporation of viscous (air) damt)ing effects (modeled by a term of the form 7wt in

the beam equation). As noted ill the examples, tile internal Kelvin-Voigt damping in concert

with tile coupling effects due to tile cont.im6ty of velocity and backpressure causes a beam

response which (lifters somewhat from that observed with an uncoupled, undamped beam

having the same dimensious.

The model we have developed has nonlinearities in the (i) variable domain t_(l), (ii) back

pressure term -Ot(t,.r, w(t,z)), and (iii) velocity term A-Vd)(t, ;r, w(t, :r)). j. [lnder an as-
PI

sumption of small displacements (w(t,z) = ,b(t,z) + (5 where _b - 0) which is inherent in

the Euler-Bernoulli formulation, the variable domain [_(t) can be approximated by, the fixed

domain f_ = [0, a] x [0,[] as shown in Figure 2. Note that with this assumption, the velocity

term mVO(t cc, w(t, x)). j Call be approximated by the normal term ±vg)(t z,w(t,z)), fi
PI _ PJ

which arises when developing the weak form of the equation. Tile fully nonlinear form of the

back pressure coupling term is retained throughout the following discussion.



2.4 Strong Form of the System Equations

For the coupled system in which ._ pairs of t)atches are bonded to the beam and excited out-

of-phase, the acoustic, structural and coupling components just discussed can be coinl)ined to

yieht the approximate nonlinear model

¢_. = c2A¢_+ dAe, t (:r, s/) C f_, _ > 0,

V¢. ;_ = 0 (:r,:/) E V ,: > 0,

1
--v¢(_, :,.,,,;(t, :,.))•,_,-- .,,,_(t,:) 0 < : <., _> o,
Pf

02 (El 02w O:_w \
p..,. + i):r_ ", i):r_ + cl)l_)

= -¢t(t,x, w(t,x)) + f(t,:r) + _ i=i

.,(t, o) = _°_'(:,o) = ,,;(:.,_)= _°":(t'") = o : > o .

1>0,

(2.10)

0(0,x, ,_)= Oo(:;:,<_/) . .,(0, :.) = .,o(:;:)

_(0, _,,y) = 0, (x, v) , .,_(0,_,,)= ;,:,(:;.)

Here Iti(t) is the voltage being applied to the i th patch and kT,e, denotes the characteristic

function over tile i th patch.

We point out that. the piezoceramic material parameters /¢.7is' (see (2.9)) and /C.;_, i =

1,..-,._ as well as the beam paran/eters p, El and cDl are considered to be unl<nowll alld

are estimated using inverse probleni techniques as discussed in later sections. While the

expressions giwm in (2.7) and (2.S) can be used as starting values in the parameter estimation

routines, experimental evidence (see [15, 16]) has indicated that the final parameter values

can vary quite significantly from the analytic vahies due to tile contrit)utions fronl the bonding

layer, variation in the measlli'ement of physical constants, and nonuniformities in the various

materials. This colnl)ined with the lack of analytic expressions for the damping constant

necessitates the estimation of these paranleters before model-based control strategies can be

imt) lemented.

\Ve also enlphasize that the parameters /Cff,p, El and CD[ are piecewise COllS_{.all[; ill ll3-

ture due to the i)reseuce and difh'ring material properties of the 1)onding layer and t)atches

(see (2.8) as well as the results in [15]). This leads to diffic,dties with tile strong form of the

systeni equations since it, necessitates the second derivatives of the tteaviside function (equiv-

alenl..ly, derivatives of the Dirac delta) thus yielding an unbounded control int)ut operator.

The differentiation of the discontinlious material paraniet.ers also leads to difficulties when ap-

proxiniating t|ie dynanlics of the coupled systeni. To avoht these problenls, it is advantageous

1o forlilllla.te the problem in weak or variational form (the llse of the variational ['orili also

t)erlllit, s the use of basis functions having less sllloothness than require(t for those llse(t whell

al)l)roxinlating the solution t,o tile S'61'l,)llg forlll of the e(lilal;iolIS).

9



Finally, wenote that in tile caseof no acousticcavity damping (d = 0), the model (2.10)
is completely equivalent to tile nonlinear models that are the basisof tile investigations in
[1,8, 10,11] if one replacestim coupling terms P.fOt and 5'= -_'0 in those models by 6_ and

= -±V¢, respectively. That is, tile potential used in those references differs from tile one
P!

used here by a multiplicative factor ±.
Pl

2.5 Weak Form of the System Equations

At, appropriate choice for tile state of the second-order problem (2.10) is tile pair (0, w)

consisting of the acoustic potential and beam displacement. It follows immediately that with

this choice, the state for tile problem in first-order'form is Z = (¢, w, (_, tb) which contains tile

pressure (since p = ¢) as well as tile beam displacement and velocity.

The state space and space of test functions are taken to be the product spaces _ = V × H

and _' = V x V where the Hilbert spaces H and V are given by H = L2(_) x L2(Fo) and V =

/41(_) x H_(F0). Here L2(fl) and Ht(fl) denote the quotient spaces of L 2 and fi t over the con-

stant functions and H2(p0)is give,, by H2(p0) = {V', G H2(['o)'(o(x)= *//(x) = 0 at x = O, ct}

(the use of the quotient space results fi'om the fact that the potentials are determined only

up to a constant). From energy considerations, the tt and V inner products are taken to be

while the product space inner products are given by

<(o)' A v

Integration by parts in a manner analogous to that in [1] in combiuation with the approx-

imation of the variable domain _(t) by the fixed domain l_ = [0, a] × [0, g] and tile use of

Green's theorem then yields tile nonlinear first-order variational form

1

(2.11)

i=1

10



R)r all qJ= ((5,7/)G Y. We point out that in this variational form the derivatives have been

transferred from tile plate and patch moments onto tile test functions. This eliminates tile

prol)lem of having to approximate the derivatives of tlle characteristic function and tile I)irac

delta as is the case with the strong form of tile equations.

Tlle system (2.11) can be formally approximated I)y replacing tile state variables by their

finite dimensional al)proxinlations and constructing tile resulting matrix system, and it is in

this form that we will consider at)tm)ximation strategies in Section 4. In order to discuss the

w,ell-posedness of the problem, however, it is advantageous to pose the prol)lenl in an abstract

(:au('hy format as discussed in the next sul)section.

2.6 Abstract First Order Formulation

Following the theoretical work in [2, 3], it is advantageous to formulate tile problem in terms

of sesquilinear forms and the bounded operators which they define (see also [1, 10] for further

examt)les (letailing the al_stract formulation of structural acoustic systems in l his manner).

We begin by pointing out that tile Hilbert spaces H and V form a (lelfand triple V _ H __

H* _-+ V* with pivot space tt (further details concerning the basic definitions and fundamental

functional analysis theory here can be found in [22]). For Op= (0, w) and _P = (_,7/)in V, we

then define the sesquilinear forms c*i : V x V --* C, i = 1,2 by

0

(2.12)

With these definitions, it is straightforward to show that _1 and o'2 satisfy various conti-

nuity, symmetry and coercivity conditions. Namely, o'1 satisfies

I_,(*, q')l ___c,l*lvl*lv , for some _, e (bounded)

Re o'l(*, _) _ c_l_l_ , for some c_ > 0 (V-elliptic) (2.13)

_,(,, *) = _l(*, *) (symmetric)

for all O,_ E V (tile l)oundedness results from Schwarz's inequality for inner products in

conjunction with equivalence results for various Sobolev norms, while tile V-ellipticity and

symmetry of o._ follow directly from the fact that o'_((l), _P) = ((I), _)v)"

The behaviour of o2 depends Ul)On tile form of damping in tile cavity Ft. If damt)ing is

included in a region _ having positive measure as discussed in Section 2.1, then o'2 satisfies

Io'_(*,*)l _ c.._l*lvl_l,_, , for some c_ < IR

Re or2((1),(I))_>c41(I)1'_.... , for some c4 > 0

(boun dod)

(V-elliptic) .

(2.1,i)

11



The V-ellipticity follows from tile fact that

Re = IV t2a + c,,I '
0

0

d'),

d7

with the final inequality resulting from the observation that there exists a constant k3 such

that k, ffi IV¢l"d_ >__,:_f_,IV¢12d_fo_all • _ V, O_,the other hand, if the cavity is taken

to be completely open with no medium damping assumed (hence meas(D) = 0 and d = 0

throughout Ft), then one can only establish the weaker H-semiellipticity condition

Re _(*,*) _>c41"15 , _, _>0

for or2 (in this case c4 = 0 since cr2(qS, q_) contains no acoustic components when damping is

omitted in the cavity). As discussed in the next section, the inclusion of medium damping

within the subregions _) and tile resulting V-elliptic behavior of c_2yields stronger semigroup

results than those obtained when acoustic damping is omitted.

To account for tile patch contributions when a w)ltage is applied, we let I7 denote the

Hilbert space containing the w)ltage inputs and we define the operator B E £(U, V*) by

{I3u, _)v.,v = fro _-_lCBui_w,l)271d7
i=1

for _ C V, where (.,-)v.,v is the usual duality pairing. Finally, the external forcing and

nonlinear perturbation terms are given by F = (O,f/pb) and (;(z, zt) = (0,-0t(w)) where

_t(w) = q_t(t, z, w(t, x)) =- 4)t(t, z, w(t, :r)) - 4h(t, .r, 0) denotes the nonlinear perturbation to

tile linear coupling term.

With these definitions, we can write the system (2.11) in the abstract weak or variational
forlll

(_.(¢), *)v.,v + _(-,(t), ,) + _,(:(_), ,) = (/<,(¢) + F + (;(_,_,), *)_.,v (2.1,_)

for 02 in V. We reiterate that the state for the problem in second-order form is given by

z(t) = (¢(t, ., .), ,v(t, .)) in V _ H.

To pose the system in first-order form, we form the product space terms Bu(t) = (0, Bu(l)),

y(_) = (0, F(_)) and G(Z(_)) = (0,(;(4_),z_(t))) in V" = V x V" and de_.e the operators
A1,A_ C_(V, V') by

(Ai¢,qJ)v.v = ai(q_, *)

for i = 1,2 (the existence of Al and A2 is guaranteed by the boundedness of al and _'2).

Then, for the state Z(t) = (z(t),z,(t)) = (4),w,d),zb) in _ = V x tl, the weak form (2.15) is

formally equivalent to the system

z,(t) = Az(t) + c(_,,z(_)) (2.16)

12



ill "ld* where

all([

c(t, z(t)) = B_,(t) + f(_) + G(z(t)) (9.17)

,tomA= {(-)=(T,A)cH'A C V,A,T+A2A C H}

- A j -.42

(further details concerning tile formulation of tile first-oMer sysWm in the linear case can

1,e found in [1]). The representa.tion (2.16) is formal in the sense that the manner it, which

differentiation and the resulting solution exists has yet. to be specified. This will be discllssed

next in the context of proving well-posedness results for the system model.

Finally, in discussing well-posedness results and l)a.ranmter convergence in the sections

which follow, it proves useful to compare the nonlinear system with that which results when

both coupling terms are linear*zeal. The latter is found by replacing the term Or(t, x, w) bv

()_(t,x,0) in the various expressions for the coupled system (equivalently, take (;(:, :t) = 0).

This yields the second-order variational form

(:,(f), ,I,)v.,v + _(:,(_), q,) + _,(:(t), q,) = (B,,(t) + F, *)v.,,, (2.19)

for _P E V and consequently the first-order system

z,(t) = .4z(_,)+ s,,(t) + or(z) (2.20)

ill "_*.

2.7 Model Well-Posedness

The first step in determining the well-posedness of the sere*linear system model is to argue

that .,4 generates a sere*grout) on _. As noted earlier, the sesquilinear form al is V-ellit)tic,

contilmous and symmetric while G2 is continuous and V-ellil)tic if damping is included in the

region i) or t/-semiellil)tic if damt)ing is omitted in the cavity. In both cases, the Lumer-

Philit)s theorem (with arguments similar to those given in pages 82-84 of [2]) can be used to

prove that the operator M defined in (2.18) generates a (70-sere*group 7- on the state space 7-{.

The sere*group satisfies the exponential bound ]T(t)I _< _" for t > 0 (where it, fact, w = 0 due
,)to the fact that A is dissipative as shown in [_]). Moreover, if medium damping is included

in the region (_ (which implies that 0"2 iS V-elliptic), the semigroup 7- is analytic on 7-{.

For the prol)lem thus l)osed, the state lies in 7-{ which iml)lies that the sere*group 7-

generated 1)y M ' dora A C _ --+ 7_ is defined on _. The nonlinear forcing term C(t, Z(I)) =

Bu(t) +.Y(t)+G(Z(t)), however, lies in 12" rather than 7-{ since the control term 13 E £(/"_, I."*)

defines the product space control term Butt) = (0, Butt)) E {0} x l"* C 1." x l"* = 12".

To remedy this, "extrapolation space" ideas attd arguments similar to 1hose presented in

[3, 4, 1.9] at'(:' used to extend the sere*grout, 7-(t) on _ to a semigr(,u l) T(t) on a larger space

W" D {0} x V" so as to he compatil)le with the forcing term.

13



As detailed in [10], the spaceof interest is defined in terms of doraA* where

( )A'x= AI¢- A_

Specifically, the space 142 = [dora A'] is taken to be dora A" with the inner product

{¢, _}w = ((A0 - A*)¢, (A0 - A')_)_

for some arbitrary but fixed A0 with A0 > 0a (recall that the original solution selnigroup

satisfies the bound IT(t)] < e_'t). As proven in [4], the resulting 14' norm is equivalent to

the graph norm corresponding to A*. Moreover, we have that {0} × V* C gY* = [dora A*]*

(see [10]for details).
From the definition of.A* and the equivalence of the 142 norm with the graph norm corre-

sponding to fl,*, we can define _O E 142" by

for all O E 7-/, X C IV. With this definition and tile Riesz representation theorem, it is

shown in [10] that .A is an extension of the original operator _i from don] .,4 C "H to all of 7-(.

Finally, as proven in [4], the operator _ is tile infinitesimal generator of a C0-semigroup _(t)

on IF* which is an extension of 7-(t) from 7-/to W * (note that _(t) is also analytic if medium

damping is included within the region _).

Having extended the operator _l and hence the generated semigroup to a space which is

compatible with the forcing function, we are now in a position to discuss criteria on the input

terms F and B which guarantee the existence of a unique solution to the system model. In

the corresponding linear problem, under reasonable regularity conditions oil t _ u(t) and

t _-+ F(t), one can immediately argue the existence of a unique strong solution to the system

in terms of the extended semigroup _(t). For the semilinear problem of interest, however, the

nonlinear nonhomogeneous terms must satisfy certain continuity criteria in order to obtain

similar results. For example, if we let X denote the reflexive Banach space W* and assume

that C : [0, T] x X -+ X defined in (2.17) is continuous in t on [0, T] and uniformly Lipschitz

continuous on X, then the integral equation

/0 ( 0 )z(0=¢(t)z0+ ¢(_-._) _(._)+F(.4+C(Z(._)) ,L_ (2.21)

is wen-defined for B_ + F + a(Z) C L2((O,T), V*). Moreover, for Z(0) = &, the solution
Z(t) of (2.21) is a unique lnild solution to (2.16) (see Theorem 1.2, page 184 of [21]). In

addition, if C : [0, T] x X _ X is Lipschitz continuous in both variables, then it follows from

Theorem 1.6, page 189 of [21] that (2.21) provides the strong solution to (2.16) interpreted in

the W* sense.

The required continuity of the nonhomogeneous terms Bu and F is demonstrated in [10]

and hence the remaining question concerns the Lipschitz continuity of the nonlinear coupling

term a(z, zt) = (0,-¢t(w)). If we assume that the input terms f and Bu are sufficiently

smooth so as to assure tile necessary continuity in G(z,&), then the nonlinear system is

well-posed. These results are summarized in tile following result.
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Lemma 1. (Well-Posedness of the Nonlinear System) Consider the nonlinear system
representedby (2.15), (2.16)or (2.21)and assumethat F and B_t are sufficiently smooth

so that C(I,Z(t)) = /3u(t) + ?(t) + G(Z(t)) is Lipschitz continuous in both t and Z.

Then (2.21) with Z0 E _ is tihe unique strong solutiiol) to (2.15) l)oth when acoustic

damping is assumed in the region () and when no damping is present in tile cavity (in

which case, 0"2 is only H-semielliptic).

These results can be further extended when acoustic damping is assumed in the region _'_

and hence 0"2 is V-elliptic and 7- is analytic. In this case, the mild (and thus strong) solutions

to (2.20) are guaranteed to be equivalent to the weak or variational solutions to (2.19) for

su[ficiently smooth nonhomogeneous terms. The following theorem summarizes this result for

the linearized problem.

Theorem 1. (Linearized System: Equivalence of Solutions) Consider the system rep-

resented by (2.19) or (2.20) and suppose that the mapllings t _ u(t) and t _ F(t) from

[0, T] to IR1 and g*, respectively, are Lipschitz continuous, t'_m'thermore, assume that

medium damping of the form (2.2) is present in the region Q C Q. Then for each

Z0 E 7ff = dora _,, we have that (2.20) taken with Z(0) = Z0 has a unique strong

solution given by (2.21) with _(Z) = 0. Moreover, this strong solution is equal to the

weak solution of (2.19).

The proof of tile equivalency between strong and weak solutions follows that given in [3]

for general second-order systems with unbounded input terms. We point out that numerous

numerical results have indicated similar results for tile nonlinear problem and the case in which

damping is omitted in the cavity even though we have not extended the results equating the

strong and weak solutions to cover those cases.

3 State Approximation

The modeling and well-posedness discussion thus far has been for the infinite dimensional non-

linear structural acoustic system. In this section we discuss a Galerkin scheme for discretizing

the problem which can be used when simulating the system dynamics, estimating the physical

parameters, and calculating control gains (see [1]). This is accomplished by approximating

the beam displacement and acoustic potential by spline and spectral expansions, respectively.

3.1 System Approximation

As detailed in [1] where the corresponding linear problem was considered, cubic splines are

suitable for (liscretizing the beam displacement since they satisfy the smoothness requirement

as well as being easily iml)lemented when adapting to the fixed-end boundary conditions and
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patch discretizations. Specifically, the approximate beam displacement is taken to be the
linear combination

n-1

= wN(t_B '_wN(t,x) E i ,', i (x)
i=1

where B)'_ is the i t/_ cubic spline which has been modified to satisfy the boundary conditions.

The acoustic potential is apwoximated by the Galerkin expansion

oN(t,x,y) = E E ,_(t)P_(x)Pj(y)o
j=0 ,=o

i+j#O

where P¢(z) and Pie(y) denote the standard Legendre polynomials that have been scaled

by transformation to the intervals [0, a] and [0, g], respectively. The condition i+ j ¢ 0

eliminates the constant function thus guaranteeing that the set of functions is suitable as a

o_ ,,_ = {p;_(_)pf(y)v'_x'''_ where,,_-basis for the quotient space. We take {Bk(x, JJk=l J i,j=l,i+j#O

(m_ + 1)(m v + 1)- 1.

The m and n - 1 dimensional approximating cavity and beam subspaces are taken to be

,,_ m .... /,_-1 respectively, where /:/_'_ and R__ are the i thH_ = span {B_'_}i=l and H b = span {B i Ji=l,

cavity and beam bases described above. Defining N = m + n - 1, the approximating state

space is then taken to be H N = H'_'_ x H'b_ and the product space for the first order system is

7-{N = H N x H N.

By restricting the infinite dimensional system (2.11) to _N X _N, one obtains the nonlinear

finite dimensional system

] [0 E0]0 M N ON(t) = -A N _AN(wN(t)) ON(t) + [-1N u(t)+ /_N(t)

0 10 Mff 0N(0) g_

with
M_ = diag[M_,M_] ,

Mff = diag[M_, M_] ,

AN : diag[A_,AWl

and

, =
The vector oN(t) (_N(t),oN(t), . N= •., _m(t), wN(t),w.)_r(t),..., wN,(t)) T contains the N x 1 =

(m + n- 1) x 1 approximate state coefficients while u(t) = (u_(t),...u_(t)) T contains the .s

voltage values. The matrices M N and A N are the mass and stiffness matrices which arise when

solving the uncoupled wave equation with Neumann boundary conditions while M N, A N and

A N are the mass, stiffness and damping inatrices which arise when solving the damped 1)earn

equation with fixed boundary conditions. The matrices M{_ and M N result from the choice
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of V inner product (see [1]). The contril,utioni_ from the cow,piing terms arc contained in the

ma.trix ..4ff_ and operator/t/_(u,_"_(Z)) while the control, forcing and initial terms are contai,w,t

in f-]½\_, /_x(t)_ and .Off, respectively.., A more detail description t,f the various component

lnat.rices ('all be found ill [1].

The eqllivalent finite dimensional (:alu'hy equa.tion is then

:)_"(t): .x" (:/N(t))+ BN,,(_/+/_"_(_)

:/_(o) = ,)g?'
(3.1)

with the various operator definitions following from those given above. As with the itllillit('

dimensional problem, it will also I)e useful to consider the corresponding l)rol)h,nl

:,)x(t) = .4:":,/x(_) + f.'N.(t)+ Fx(t)

,/_(0) = :)2_
(:t.2)

when considering issues such as parameter convergence. The linear operator A '\' is obtained

by considering the linearizat.ion of A[_(wN(t)) as (lisc,lsscd in [1].

3.2 Algorithm for Constructing the Nonlinear Component

The determination of state trajectories involves th(' r('l)eated construction of th(' nonlinear

operator .&'_(yN(,)). Although most of the components of this operator need to 1)e constrtwte(l

only once, the (n- 1) × m matrix A[);(wx(/)) musl 1)e (hq.ermine(I a.t each step i_ Ill(' solution

of the ordinary ditferential equation (()I)E) (3.1) and hence its formation must b(' ma(h' as

efficient a.s possible.

We first point out that for i,j = l,-.-,m_:,m,_, this (/_- 1) x m matrix has the entries

\d= 1

where the integrals are eva.hm.ted via a (',aussian quadratlu'e rule of the form

(t 7_q

M

k=l

Here n v is the number of quadrature points and c,.. is the (luadrat.ure weight. These (l,la(tratures

and hence the formation of tile matrix can be efficiently ac('omt)lished ill Ill(' mallner oulline,t

in the following algorithm.

Numerical Algorithm for Creating the Nonlinear Component A/)'e (wx(t)):

1 (,reate the matrices A_;(, N N• ' , A.32a w and A32bj I which have the COlll[)()llellts

• a,_/

(hence dirndl, =nqx(n-l) dimA N ,=(n-1)×"'qanddim/t:,2l,_ 1 =,,_/×(m_.+l)).32au

These matrices need to be formed only one( and can 1)e create(t l)ef()re solvin N Ill(' ()I)E

systenl.
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2. With the notation o denoting Hadamard or componentwise multiplication, perform the

following operations hi tile ODE solver:

= AN wN(t)

for j= 1 :my+l

A32bj2N (ll, N(t)) --_ b* ones(l,m_: + 1)

A32bj = m32bj I 0 A32bj 2

iudl = (j- 1).(rex+ 1)+ 1

ind2 = j . ( m_. + 1)

A3.2e,N (u,N(t)) (:,indl
\!

end

, dim _ = nq x 1

, dim b=nq x 1

: × +,t, dim A32bj 2

N (wN(t)) =nqX(m,+l), dim A:3._bj

(N )), dim A:_2b

AN(wN(t)) N N (wN(t)) dim AN(wN(t)) =(n_l)xm• = p]A32a_ • A32 b , •

N
U A N and A32bj I offline, the time needed to solve the ODEBy creating the matrices A32 _ , ,_'2_,,

system is reduced thus improving the efficiency of the scheme for parameter estimation and

control applications.

4 Parameter Estimation Problem

The goal of the parameter estimation problem is to determine the "true" material parameters

fib, El, cDl and K"Y.,/C_ , i = 1, • • • , s, given data measurements '; froIn some observable sub-

space Z of the state space. To pose this mathematically, we let q (p6, El, cDl 1C_,.. • IC_

)tj_ ...,£7_") and assume that q E Q where Q denotes an appropriately chosen admissible

parameter space. The parameter estimation problem is to then seek q E Q which minimizes

,l(q) = C2[CI {Z(t,,q)} - _.,] 2 (4.3)

given pointwise temporal measurements zi = 5(ti) at given points on the beam and in the

cavity. Note that this minimization is performed subject to Z = (¢,x,¢,_b) satisfying the

coupled system equations (2.11) or (2.15). Depending on the experimental apparatus, the

data observations may consist of position, velocity, acceleration, or accumulated strain mea-

surements at points on the beam as well as pressure measurements inside the cavity. The form

of the operator C.2 depends upon whether one is performing the estimation procedures in the

time domain or in the frequency domain. In the tilne doinain, C2 is the identity whereas it is

the Fourier transform for estimation ill the frequency domain.

For time domain estimation with data consisting of position, velocity, or acceleration

measurements at points x on the beam, the fit criterion fimctional to be minimized is

Ouw (li, 2; q) - }i 2 (4.4)J(q) = 5V/.
i
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with u = O, 1 or 2. On the other hand, if a patch with endpoints at xl and :r2 is used to collect

accumulated strain measurements, an approt)riate functional is

K:s[Ow Ow _ _i 2
.](q) = :,,2,q) - *,, q)] -

(4.s)

(see (2.9)). Here tile data consists of the voltage measured across the patches. The patch data

can also be combined with pressure measurements t;i at points (2, y) in the cavity to provide

a fit criterion functional

{lOw Ow )^2 }./(q)= _. IC";17.r(i x2;q)-_(ti,xl;q) -zi
(4.6)

which in some cases has more sensitivity than that in (,1.5) which considers only strain mea-

surements.

The above fit. criteria can also be used with data that has been transformed to the frequency

domain (in which case C2 is the Folu'ier transform), and this is indeed a common procedure

for startil_g the optimization process with data in which several frequencies are excited (see

the comments in the examples as well as [13, 14]). In this case, optimization is qualitatively

performed in the frequency domain until frequencies match sufficiently so that the ot)timization

routines will converge with the time domain data.

To facilitate the estimation of the material parameters p, E1 and cDl, we now make some

assumptions regarding their spatial behavior. Because tile beam and t)atches are considered

to be homogeneous as well as uniform in width and thickness, it. is reasonable to assume that

the density, stiffness and daml)ing parameters of the combined beam/piezoceramic patches are

piecewise constant in nature (see for exa.mph', [15]). A suitable partition is then taken to be
l i=l,...,s

{,ok} = {0, o} U{ctijjj=l,2 where the 2._ points {ai5} are the endl)oint.s of the ._ piezoceramic

patches. Finally, we assume thai. these t)aramet.ers have the form

2s+l

k=l

2s+l

k=l

2s+l

= Z
k=l

, CI _ C 3 _ .. • _ C2s+l

, g'l = _':3..... i:2.,+1

, ¢*?1 = C3 .... (_2s+'

(4.7)

where the piecewise constant 1,asis functions are defined by /_k(x -- H(x -./2/._1) - If(it- ir]¢).

The coefficient constraints q = c:_ ..... c2,+1, and so on, result from the unih)rmity of the

beam in areas not covered by l)alches. Finally, we recall from the definitions (2.8) and (2.9)

that the patch parameters KT_,.-.,KT_, and K"sq, ... ,K:_ are simply constants which depend

on piezoelectric prope,'ties, the geometry and size of the patch, and t/arch and bonding layer

properties.

Although Q is finite dimensional with the above assumptions on the parameters, the min-

imization of the fit crit.eria in (4.4), (4.5) and (4.6) involves an infinite dimensional state
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and hence is not immediately tractable. With tile Galerkin schemes of tile tile last section,

however, corresponding minimization problems involving the state approximations can be de-

veloped and used when estimating physical parameters with these fit-to-data techniques. With

w N, ¢_ and H N C V defined in tile last section, finite dimensional functionals corresponding

to those in (4.4), (4.5) and (4.6) are

"IN(q)= _i Ot (ti,ar;q)-- , U=0,1,2 ,
(4.8)

jN(q) = _ tcS /OwN_--gT--X(t",

all d

{Ks/O wNj (q) = E [07

;_i 2
0wN(ti, x,;q) -- (4.9)

x2; q) Ox

OwN(ti'ar'; q)/oar1 - + , y) --13i , (.t.10)

respectively. The approximate beam displacement w N and acoustic pressure pf t at the

various points are found by solving either the nonlinear finite dimensional system (3.1) or the

system (3.2) if one is considering the linearized problem.

Tile following theorem taken from [16] specifies conditions under which convergence and

continuous dependence (on data) of the solutions to the linearized finite dimensional parameter

estimation problems involving tile functionals (4.8), (4.9) and (4.10) can be expected.

Theorem 2. (Linearized System) Let Q be a a compact subset of a metric space O with

metric d and assume that H N C V approximates V in the sense that for each _ E V,

there exists CN E H N such that

_ _N v < c(N) -+ 0 as N _ oc . (4.11)

Furthermore, assume that _rl(q) and o2(q)defined ill (2.12) are V-elliptic, continuous,

and satis_" the continuity with respect to parameter condition

I_(q)(q_,q*)-_(O)(_,qJ)l_ "r_d(q,O)l*lvl*lv , for q_,* E V (4.12)

for i = 1,2 and q,O E Q. Finally, assume that

q _-+ (Bu + F)(t;q)is continuous from Q to L2((0, T), V*).

For arbitrary qN such that qN _+ q in Q, one then has the convergence

J(t;q x) --, z(t;q) in v norm

zN(t;q N) --+ Zt(t;q) ill V nornl

(4.13)

(4.14)

for t > 0. Here z and zt are solutions to tile linearized system (2.19) and z _'_'and z)'

solve the corresponding linear finite dimensional system ill H N.
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In our t)rol)lems the admissil)leparameter,spaceQ is taken to be a compact suhs¢'t of

the metric space 0 = [L.×,(0, a)] :_ × [lRS]2 with elements satisfyil,g the coefficient constrai,lt.,

specified in (4.7) as well as the physical constraints p > 0, E1 > 0 and c[_l > 0 on (0, tt). hi

considering tlle remaining hypotheses, we note that t]le sesqllilinear forms satisfy the ellilJticity,

continuity and parameter continuity conditions as long a.s damping is assumed in some region

i_ C fi (see (2.13) and (2.14)). Moreover, tile intmt te,'m (F+ Bu)(q) satisties lhe cou,litio,I

(4.13). Finally, the conw_rgence condition specilie<t in (4.11) is satisfied as a. conse<l_lence of

the approximating properties of the cubic splines and Legendre polynomials in a. (_alerkill

setting (see [6] for r,l,'ther details).

Hence, for the linearized t)roblem with acoustic <tamping in _, a sul)se(lllen('e of solllti(ms

qN to tile proldems involving the minimization of the funct.ionals (4.8) with tJ = 0, 1, (.1.9) or

(4.10) subject to (3.2) will converge to a solution q of the original prol,h,m of minimizing file

flmctionals (4.4), (4.5) or (4.6) subject to (2.1.()). The convergencei,l the case involvi,tglhe

minimization of (4.8) with acceleration data does not. follow directly from this tl,,o,'Cln 1,ut

can be obtained using results from the theory of analytic semigroups in a manner allalogolls

to that used in [7].

With boundedness and Lipschitz cont.inldty assulnptioIlS on tile nonlinear coupling 1.cnn

(;(Z), similar results can be obtained for the nonlinear problem as summarize¢l ill the following

remark.

Lemma2. (Nonlinear Damped System) Consider the system with the nonlinear intmt

term Butt) + F(t) + G(Z(t)). If, in addition to assuming a continuity condition of the

form (4.13) (with Ba +/v rel)lace d by I3u + F + (;(Z)), we also assume that (;(Z(t)) is

continuous in t, uniformly Lit)schitz ¢'ontinllOUS in Z, and displays at most atline growtll

at oc, then convergence results analogous to th()se summarized in Theorem 2 can I,"

obtained for the nonlinear system.

We point out that these continuity assumptions on (; were also made when discussing the well-

posedness of the nonlinear system. Details concerning these conditions a.s well as argltments

leading to the proof for the nonlinear case can be found in [5].

As indicated previously, the assumption of medium daml)ing inside the cavity is often

inappropriate in a.t)l)lications of interest. While we have not extended Theorem 2 to include

tile case in which acoustic damping is omitted, extensive numerical tests haw' indicated that

parameter convergence and continuous dependence of tile parameters on data is being ol)lained

in tile same manner exhil)ited by the system having both acoustic and strlwtural damping.

This is demonstrate(t by the results in the following examl)h_s fl)r the nonlinear 2-D structural

acoustic system in which cavity damping is omitted.
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5 Numerical Examples

To test tile parameter estimation methodology, the general problem

¢)tt = c2A4) (,r, y) E _, t > 0,

v,. ,_,,= 0 (_-,y) c F, z > 0,

VO(t, z, _,(t, x)). ,_ = pjw,(t, z) o < .r < .6, _ > o,

:'""+ _ _ ox2 + :"t_/
02 s

= -o_(t,.,,, ,.,(t,:)) + .f(t, _) + _ _ _:_(t)xp_,(.,,)
i=1

Ow Ow ,

,,,(:,0) = _(t,o) =,,(t,.6) = 7x(t,.6) = 0 t >0 ,

0 < x < .6 ,

t>0,

_,(o,:,.,:,j)= _(o, _,.,._j)= ,,(o,x)= w,(o,x) = o

was considered. The cavity was assumed to have x and y dimensions a = .6 m. and g = 1 m

with a beam at one end having length .6 m, width .1 m and thickness .005 m (see Figure 3).

The density and Young's modulus for regions of the beam devoid of 1)atches were taken to be

p_) = 2700 kg/lz_ 3 and E = 7.1 x 101° ,V/m. 2 which yields p = 1.35 kg/m and EI = 73.96 Nm2

for the linear mass (tensity and stiffness parameter (see Table 1 for a compilation of the

structural parameters for t;he system). The Kelvin-Voigt damping parameter was chosen to

1)e cul = .001 kg m3/.sec. Finally, tile values pf = 1.21 kg/m 3 and c = 343 m/.sec were used

for tim atmost)heric density and speed of sound.

In the examl)les , we consider a system in which tile bounding end beam has bonde(t

to it a centered piez(weramic patch cowwing i/3 of its length as shown in Figure 3. The

patch is assumed to have thickness T = .000508 m and width b = .1 m (we point out

that the chosen thickness value corresponds to 20 rail which is a commercially available

thickness for piezoceramic patches). The Young's modulus and density were taken to be

ET,, = 6.3 x 101° N/m 2 and ppc = 7650 kg/m 3 which are reasonable for a patch made fi'om

(I-1195 piezoceramic material.

From (2.7) and (2.8), we see that the density and stiffness coefficient ill the region of the

combined beam and patch (Region 2) will be greater than that of tile beam (Region 1) (see

Figure 3). We also assume that the damping coefficient will be slightly larger in Region '2

than Region 1.

For testing purposes, the structural t)arameter values in regions covered by the patches were

chosen as specified in Table 1. As seell there, the constant K;B = Ep_bd31(h + 2Tbe + T), which

arises when modeling the actuation due to the patch, was taken to be /C t_ = .0067 Nm/V

(this latter value was obtained by assuming a bonding layer of thickness The = .0001 m and

taking d31 = 1.9 x 10-m m/V which is the value specified for (I-1195 piezoceramic material).

The constant /C s" which arises when using the patches as sensors was taken to have the value

]C '_"= 170 V.
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FIG. 3. Acoustic chamber with one c_ntered 1/3 le7_gth patch.

Tile following examples demonstrate the numerical estimation of the material parameters

p, El, cDl, ](_B and k) _ using various techniques for exciting the system and observing the

response. In the first example, the natural frequencies for the fully coupled system were de-

termined by simulating an impulse hammer impact to the center of the beam. The knowledge

of these natural frequencies was then used when choosing the frequencies of the exciting forces

in the other examples. In the second example, a periodic uniform forcing function (model-

ing a uniform exterior acoustic pressure field) was applied to the beam for a short interval

of time and then set to zero. This forcing function was chosen so that three system modes

were initially excited and then allowed to begin decaying due to the damping the beam. The

acceleration of the center of the beam was used as data for estimating the material parameters

[, El and cl)l (since no voltage was applied in this example and the patch was not used for

sensing, K7R and K_s were not estimated). In the third example, the system was excited by

the application of a periodic voltage into the patch. Again, the system was excited for a short

time interval and then allowed to freely decay in energy. Acceleration data at the center of

the beam was used to estimate the four parameters p, El,cDl and K7_. The patch was used

both for actuating and sensing in the fourth and fifth examples. In Example 4, a periodic

w)ltage was applied for an initial time interval after which the system energy was allowed to

decay. During the decay interval, two sets of data were calculated and a comparison was made

between the results obtained when each was used for recovering the parameters p, El, ct)l, k_ _

and K)s'. The first data set consisted solely of the voltage produced by the patches during vi-

bration (and hence contained strain measurements) while the second contained a combination

of w>ltage measurements from the patch and acoustic pressure values fi'om inside the cavity.

Finally, a simulated voltage spike to the patches was used to excite the system in Example 5

(with an effect similar to that observed when an impulse hammer is used to excite the system)

with the patches again being used as a sensor throughout the remainder of the time interval.

Thus in the last two examples, the "smart material" aspects of the structure were utilized in

determining its physical parameters.
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True Values Initial Values Initial Values

(Set 1) (Set2)

p Region 1 1.35 1.4 1.4

(kg/m) Region 2 2.115 2.0 2.0

E1 Region 1 73.96 74.0 75.0

(NTn 2) Region 2 125.4 125.0 127.0

cDl Region 1 .001 .0008 .0001

(Nm2,_ec) Region 2 .00125 .0008 .0001

K B (Nrn/V) .0067 .007 .01

K s (V) 170.0 172.0 175.0

TABLE 1. (a) True values of the material parameters; (b) Set 1 of initial guesses for the material

parameters; (e) Set 2 of initial guesses for the material parameters.

Example 1: System Dynamics

In order to determine tile system dynamics with the parameter values in Table 1, the

forcing function f was chosen to simulate an impulse at the center of the beam; that is,

f(t,x)=5(x-.3)5(t) .

This models the force that would be delivered by a centered impulse hammer hit. After the

initial impulse, the system was allowed to run unforced through time T = 8/60.

The beam acceleration obtained with m_ = m v = 12 and n = 16 basis functions at the

point X = .3 is plotted in Figure 4 with a corresponding frequency plot in Figure 5. The first

four system responses occur at 62.9, 179.7,342.1 and 397.9 hertz.

For comparison, we note that the analytic natural frequencies of the first two symmetric

modes of an isolated, homogeneous (no patches), undamped beam having the same dimensions

as those in this system are 73.2 and 395.6 hertz while those of the uncoupled acoustic cavity'

are 171.5 and 343 hertz (the analytic undamt)ed beam and cavity frequencies are given by

and

_/ -- "_1 = 4.7300,)_2 = 7.8532,''' (5.1)
fi- 2rra2v P

f,,,_ = _ + , m = 1,... , n = 0,... ,

respectively). The differences between the ohserved and analytic values are due to the presence

of the patches on the beam, the internal damping in the beam, and the coupling between the

beam and acoustic field dynamics.
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Tile frequenciesobservedhere Callalso be comparedwith tile system vahles65.9,181.3,
343.9and 387.8hertz which were obtained when no patcheswere bonded to the plale an(I
linearizedcouplingconditionswere assumed (see [8]). It can be seen that the increased stiffness

due to the presence of the patches manifests itself at the higher frequencies (397.9 hertz versus

387.8 hertz for tile uniform beam) whereas tile increased density is lnore of a factor at the

lower frequencies (62.9 hertz versus 65.9 hertz for tile uniform beam). This can be explained

by colnparing tile bending shapes of the first and third beam modes and noting that the
increa_sed stiffness is more of an influence on tile third beanl mode while tile increased density

lnore directly influences the first inode.

Beam Response to an Initial Impulse
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FK;. 4. The beam response to a centered impact.
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FIG. 5. The beam frequency response to a ccntcrcd impact.
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Example 2: Periodic Acoustic Excitation, Acceleration Data

In this example, a unifornl (in space) periodic force modeling an acoustic plane wave was

used to excite the system and acceleration data was used to estimate tile parameters p, E1

and cDl (£;B and K s were not estimated since we were not applying voltage to tile patch or

using the patch for sensing). Specifically, the forcing function was taken to be

/ sin(12Orrt) +sin(360rrt) + sin(8OOrrt) , 0 < * < 1/60
f(t,x) I 0 , 1/6o < t,_<8/60

which initially excites tile first,second and fourth system modes and then allows tile oscillations

to begin dying away due to the damping in the beam (see Figures 6 and 7).

The parameter estimation was performed with data which was generated by calculating the

acceleration of the central point of the beam at 498 uniformly distributed points throughout

tile time interval [0,8/60] (hence u = 2 in (4.8)). The acceleration was determined by using

a second-order central difference on the displacements which were obtained by solving the

nonlinear finite dimensionM system (3.1) and evaluating w N at the points (.3, tk), tk =

k. s /,: = 2,. -. 499. Due to the relatively small number of frequencies being matched, all
60(500) '

identification procedures were performed in the time domain which implies that C2 in (4.3)

was taken to be the identity.

To test the algorithm and software, noisefree data was first generated using 120 acoustic

and 15 beam basis functions (rex = m v = 10, n = 16). Using the initial parameter choices

in column 5 of Table 1, the parameters were estimated using the same basis choice with the

optimization being performed via a Levenberg-Marquardt routine. As demonstrated by the

recovered values in the third column of Table 2, very accurate estimates of the parameters

can be obtained when using the same number of basis functions when generating the data

and estimating tile physical parameters.

To provide more realistic simulations, data was then generated using 168 acoustic and

19 beam basis functions (m; = m v = 12, n = 20) with 120 acoustic and 15 beam basis

functions again being used for estimating the parameters (the use of a larger number of basis

functions when generating the data has the effect of adding numerical noise to the values being

approximated in the optixnization routine). The parameter estimates obtained with noisefree

data and data to which 10% relative noise was added are reported in Table 2. While these

results were obtained with the initial values in column 5 of Table 1, they are representative

of those obtained with a variety of initial guesses (for this method of system excitation and

observation, the optimization routine converged for a relatively large range of initial values).

Time and frequency domain plots of the data containing 10% noise and the acceleration

obtained with the estimated parameter values of Table 2, column 5, are given in Figure 6

and 7. We note that in these figures it is essentially impossible to distinguish between the

time data and tile model response with estimated parameters with the graphical resolution

used. These plots reinforce the observation that reasonable estimates of the parameters can be

obtained with acoustic excitation and acceleration data with or without noise in tile simulated

data.
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P

El

ltegion 1

Region '2

Region 1

t/egion 2

Region 1

Region '2

No Noise No Noise 10% Noise

edit. Set 1) (Dat. Set 2) (Da. Set 2)

1.3500 1.3,199 1.3469

2.1150 2.1149 2.11S1

73.960 73.8:)6 72. 130

125.,100 125. 584 130.716

.001000 .001005 .001023

.001250 .0012:/2 .001091

TABLI,: 2. Estimated vahus of p, E1 arid cDl; (a) Data g(7_erat_d with m_: = my = 10,7_ = 16 aud

m_ noise added to data; (b) l)ata gcmratcd with m_: = my = 12, 7_= 20 and r_o m_i._< added to data,"

(c) Data 9on(rated with m._- = m u = 12, 7t = 20 and 10% noise added to the data.

System Response to an Initial Periodic Force

6

t I% 0;z 004 0.o_ 0;s 0'1 o_z
Time (sec)

Fie;. 6. The system response to an initial periodic force. The solid liTu: denotes the data contabting

10% _oisc while the dashed line is tit< modtl response obtab_ed with the recovered parameter valuc._"

zn column ,5 of Tabl_ 2.
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1.4
System Response to an Initial Periodic Force
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FIe;. 7. The system frequency respo_se to a_ iT_itial periodic force. The solid line (with x ',_) dcnotc.s

the data co_tai_iT_ 9 10% noise while the da._hed liT_c (with o's) is the 7_odel re,_poT_,_cobtained with

the recovered parameter values i7_ eoluT_1_ 5 of Table 2.
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Example 3: Periodic Patch Excitation, Acceleration Data

A second means of exciting the system is through the application of all out-of-phase voltage

to the t)iez(_ceramic patches. The ([riving voltage here was taken to be

{ sin(120 -t)+sin(3607rt)+(.1)sin(S007rt) , 0 < t < 1/60,,(t)= 0 , l/(i0<t_<s/60

which initially excites the first four system modes and then allows the oscillations to begin

(lying away due to the damping in tile beam (see Figures 8 and 9). Because the patch e×cites

the higher frequencies more eIficiently than did the simulated somM field of the last example,

the magnitude of the 400 hertz contribution was reduced to better balance the system resi)onse.

Acceleration data obtained in the same manner describe(l in the last example was used to

estimate the four t)arameters p, El, cDl and ]C_ and the estimates ol)tained with no noise and

10% noise added to the data are sllmmat+ized in Table 3 (see Table 1 for the true paratneter

values). Figures _ and 9 contain the time and frequency domain results for tile case in

which the data contains 10% noise. In both cases, the choices mx = m u -- 12,7_ = 20

a.n<l 'm++ = m+j = 10,7+ = 16 were used when g(+nerating the data and estimating parameters,

resl)ectively. Also, while similar results were ot)tained with a rela.tiv(qy large variety of starting

t)arameter values, the t)arameter va.lm_s ret)orte(t here were obtained with the initial choices
in culmnn 3 of "lht)le 1.

No Noise 10% Noise

p ttegion 1 1.3502 1.3425

(kg/m.) Region 2 2.1211 2.0973

t'21 Region 1 73.139 73.449

(Nm 2) Region 2 128.179 124.741

c[)l Region 1 .000997 .000849

(Nm2._ec) Region 2 .001256 .001787

£:_ (Nm/V) .006771 .006654

TABLE :_. Estimated values of p, El, cl)l and ICB; (a) No 7_oisc added to th( data; (b) 10% noi_c
added to th( data.

In comparing the results obtained with noisefree data with those obtained under the same

conditions (same number of basis functions and noisefree data) in the last examl)le, we note

an ai)i)roximately 2% change in the estimated value of the stiffness 1)arameter in the region

covered by the patches. This difference appears to be due to the fact that the "true" data

is calculated with a lar,e_;(,r numl)er of 1)asis functions and hence with more accuracy than the

solutions being ol>tained during the parameter estimation. Tile resulting "numerical noise"

manifests itself more strongly in this case since the t)atches are more effective than the acoustic

field at. exciting high frequency oscillations which require greater accuracy to resolve (this

teil<tency is also noted in the remaining examples where patch activation is used to excite the
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system). We point out that whenthe samenmnberof basisfunctions areusedfor generatiug
data and estimating parameters,the resultsare essentiallyidentical to those ill column 2 of
Table 2 with highly accurateestimatesof tile physical parameters. Finally wenote that the
"mmlerical noise"dueto the differing discretizationscombines with random noise added to the

data to simulate the noise which is present when real data is used to estimate the parameters

in a physical experiment.

System Response to an Initial Periodic Voltage
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FIG. 8. The system response to an initial periodic voltage. Th_ solid lin_ denotes the data containing

10% noise while the dashed line is the model response obtained with the f'_eover_d parameter vahles

in Table 3.
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FIG. 9. The system frequency response to an initial periodic voltage. The solid lin( (with x's)

denotes the data containing 10% noise while_ the dashed line (with o's) is the model response obtained

with the recovered parameter values in Table 3.
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Example 4: Periodic Patch Excitation, Patch and Pressure Data

In tile previous two examples, acceleration data modeling that which would be obtained

from a centered accelerometer was used in tile estimation of tile physical parameters. Ill this

as well as tile next example, both the excitation of tile system and the sensing of tile 1)earn

dynamics are performed with the patches, thus utilizing their "smart material" capal)ilities.

Tile beam data in this case consists of tile voltage that is produced when the l)at.c[les straill

during vibration (hence tile criterion functional (4.9)) as well as data consisting of voltage

measurements ill combination with pressure measurements from within the cavity (with the

criterion functional (4.10)).

Here a periodic driving voltage was applied to the patches for the first 1/5 of the time

interval [0, 10/60] of interest after which the system was allowed to begin decaying ill energy.

Specifically, the input voltage was taken to t)e

,,(t) = { si.(120 -t)+ + siu(SOO t)0 , 2/60 < t 10/60

, 0 < t < 2/60

with the frequencies again chosen so as to strongly excite the first, second, fourth and sixth

system modes (see Figure 11). Dllring the final3/4 of the time interval, the voltage produced

by' tile patches as well as the acoustic pressure at the cavity point (.6,.1) were calculated al

750 uniformly distributed times throughout the interval [5/120, 10/60]. These values were
then used as our simulated data.

The estimated values of tile l)arameters l)arameters p, El, cz)l, K7B and K7s are re('oMed in

Table 4. In tile first four simulations, 168 cavity and 19 beam basis functions were used to

calculate the data while 120 cavity and 15 beam basis functions were used in the estimation

of tile physical parameters. The values in columns 3 and ,1 were obtained with data consisting

of tile 750 voltage values generated by the piezoceranlic patches while data consisting of both

voltage and acoustic pressure values was used to obtain the results in colunlns S and 6. Finally,

the results from a simulation in which 120 cavity and 15 I)eam basis functions were used for

both the generation of data and estimation of parameters are rel)orted in column 7 of Table ,1.

The data for this latter simulation consisted of the previously described combination of voltage

and pressure values.

It is first noted that when the same number of basis functi_0ns are used for the generation

of data and estimation of parameters, highly accurate results can be obtained for a variety of

initial starting values when using a combination of voltage and pressure values as data (the

results in column 7 of Table 4 were obtained with tile initial values ill column 5, Tal)le 1).

This is consistent with the results ret)orted ill Example 2 and described in the Examllh, 3..,ks

discussed in the latter example, the use of a larger m|ml)er of basis functions when determining

the data adds a form of "nmnerical noise" since the data is calculated with greater a('('ura(:y

than are the solutions obtained (luring llarameter estimation. Hence, although no rand(ml

noise was added to tile data, the estimated values in columns 3,5 and 6 of Table 4 (titDr

slightly from the "true" values listed in Table 1 I)ut ar(" consistent with those ot)l.aine(l in the

last example (see column 3, Table 3).

The effects that the accuracy of the initial guesses ha(t on tile estimated paranleters ('all

be seen by comt)aring the results in columns 3 and 4 (voltage data) as well as in columns 5
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and 6 (voltage and pressuredata). Tile parametervaluesin columns 3 and 5 were obtained

with the highly accurate initial choices of cohnnn 4, Table 1 while those in colmn)_s 4 and

6 were calculated with the less accurate values ill column 5, Table 1 which could reasonably

have been obtained by first visually fitting the data in the frequency domain. As obserw'd, the

change in starting values led to fairly large changes in the recovered parameter vMues when

purely voltage data was used, whereas almost no change was noted when the data consisted

of voltage and pressure values.

The variation in the recovered parameter wlues obtained with voltage data can partially

be attributed to the flatness of the criterion functional with strain observations as compared

to that seen with acceleration data. The inclusion of pressure values in the data adds rich-
hess as a result of the added information about _the acoustic state as well as the fact that

higher frequencies are more easily observed in the pressure data than in the stain values (see

Figure 10). Due to tile added information in the data containing strain and pressure values,

a wider range of initial guesses could be used since the optimization routine was h_ss like to
become stuck in local minima.

Sire 1 Siln2 Siin3 Sire4 Sire5

p Region 1 1.3501 1.:}745 1.3502 1.3502 1.3500

(kg/m) Region 2 2.1207 2.1476 2.1230 2.1231 2.1150

E1 Region 1 73.178 76.:}19 72.910 72.908 73.960

(Nm '2) Region 2 128.022 123.546 129.041 129.051 125.400

CDI Region 1 .000992 .000283 .000989 .000988 .000999

(Nm'_sec) Region 2 .001274 .000431 .001295 .001297 .001250

K7B (Nm/V) .007274 .006709 .006767 .006766 .006700

K:s(V) 158.749 85.832 172.018 171.977 169.999

TABLE 4. Estimated values of p, El, CDI, f_B and KS; (a) SimI: voltage data and th_ initial guesses

of Table 1, colunm 5; (b) ,5'im2: voltage data and the initial guesses of Table 1, colum)_ 6; (c) Sire3:

voltage and pressure data with the i_itial guesses of Table I, column 5; (d) £'im4: voltage a_d prcssure

data with the initial guesses of Table 1, column 6; (e) SimS: voltage and pressure data ge_zerate with

same number of basis functioT_s used in parameter estimatio_z, initial guesses of Table 1, column 6.
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Example 5: Patch Impulse Excitation, Patch Data

The input voltage in this example was taken to be a narrow triangle which simulates a

voltage impulse to the t)atches. As demonstrated by the strain and pressure plots in Figure 12,

this causes the excitation of multiple system modes which through time decay in energy due

to the damping in the beam.

The data was generated using 168 cavity and 19 beam basis fimctions, and a comparison

was again made between the results obtained with data consisting solely of voltage values

(using the criterion functional in (4.9)) and data lnade tap of both voltage and pressure mea-

surements (with the criterion functional in (4.10)). In both cases, the data was calculated at

900 mfiformly spaced points throughout the time interval [1/60, 10/60]

The parameter values obtained with 120 cavity and 15 beam basis functions and strain

(voltage values) data are given in Table 5. The initial guesses of colmnn 5, Table 1 were

used to obtain both the results containing 10% random noise and those to which no noise was

added (the noisefree results can be seen to be quite close to those obtained in the last two
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examples). Finally, plots containing the time and frequency domain results for tile case in

which 10% random noise was added to tile data are given ill Figure 12.

We point out that with this means of system excitation, a much wider range of initial

guesses led to convergence to the reported values than was the case ill the last example where

a periodic voltage was used to excite the system. This appears to be due to tile fact that a

larger number of frequencies are excited and observed in the strain data which ill turn leads

to "richer" data. On tile other hand, the large number of frequencies observed in the pressure

field (see Figure 12) made it difficult to use pressure values in combination with the voltage

as data since an extremely good initial guess was required ill order to obtain convergence

of the optimization routine (in this case, one must work nearly exclusively in the frequency

domain at first since any deviation in the density Xnd stiffness parameters leads to frequency

changes (see (5.1)) that make estimation ill the time domain very difficult). We also noted

that similar problems were encountered when acceleration data was used with this number of

frequencies excited due to the fact that the acceleration provides a more sensitive measure of

beam movement than do the patches which measure acculnulated strain. Hence, with a large

number of frequencies excited, the role of the patches as the sole sensors in the structural

acoustic system appears to improve, and in some cases this method of data observation may

be preferable since the matching of a smaller number of observed frequencies may lead to a

more tractable optimization problem.

No Noise 10% Noise

p Region 1 1.3516 1.3534

(kg/m) Region 2 2.1236 2.1218

El Region 1 73.261 73.969

(Nm 2) Region 2 128.156 126.152

cDI Region 1 .000993 .000959

(NI/12SeC) Region 2 .001273 .001334

K s (Nm/V) .006677 .006188

K s (V) 173.200 183.266

TABLE 5. Estimated values of p, EI, cDI, ICB and ICs using strail_ data; (a) No noise added to thc

data; (b) 10% noise ad&d to the data.
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6 Conclusions and Implementation Issues

Ix, this paper, a parameter estimation methodology for structural acoustic systems ill which

1)iezoceran_ic l)atches on the structure act as sensors and actuators has been presented. Whih"

illustrated throughout this presentation in the context of a 2-D acoustic cavity with a thin

beam at one end, the methods developed here are equally applical)le in many 3-D distrihuted

parameter models (such as those in [9, 10]) of actual ext)erimental devices currently being used

to test various modeling, parameter estimation an,l control schemes involving piezocerami(:

actuators and sensors. Recently, these estimation methods have 1)een successfully llse(l as a.n

integral t)art of feedback control techniques with experinlental data - these findings will he

reported in a future report.

The emphasis in develot)ing this parameter eStilnation methodology was on providing a

scheme which was amenable to at)proximation and imt)lementation under a variety of damping

assumptions. In doing so, conditions leading t.o well-posedness and parameter COllVergen(2e

results for both tile linearized and original nofilinear problenl were formulated, and suital_le

numerical techniques for approximating system dynamics and imph'menting the t)arameter

estimation schemes were developed.

To illustrate the method, several numerical examph's illustrating a variety of techniques for

exciting tile system and generating data were l)reseuted. Throughout tile examl)les , elnt)hasis

was placed on simulating exterior forces and generating data in a manner consistent with that

used in actual structural acoustics experiments and applications. This was done so as to gain

insight regarding the effectiveness of the parameter estimation method in various settings. The

first step in the examples was the determination of the natural frequencies for tile symmetric

(in x) modes of the coupled system. This knowledge was then used when determining driving

frequencies so as to evoke particular system rest)onses ill the later examples. Moreover, by

comparing the results for tile system under investigation with comparal)le results obtained for

the structural acoustic system in which no patches wer(' 1)(reded to the healn as well as analytic

values of the natural frequencies of the uncoul)led beam and acoustic wave, the qualitative

effects of coupling, damping, and material changes (hm to t,h(" presence of the patches were
determined.

A simulated acoustic source was used to excite the beam, and hence the system, ill the

second example with data consisting of acceleration values calculated at the center of the

beam. While tile numerical simulations demonstrated tile success of the method for both

noisefree data and data to which random noise had been added, this means of exciting the

system in a mauner that can be accurately simulated will t_(, ditli('ult to implement. This

is due to the fact that although speakers call he used to create multiple frequency acoustic

forces of the type used ill the example, it will he difficult, if not impossible, to ch, anly cut the

acoustic excitation at a given time since the speaker and room will continue to reverberate

and echo even after tile power is cut. This echo or reverberation will be ditlicult to simulate ill

the system model thus making parameter estimation through this means of systen/ excitation

difficult to use in practice.

A more readily simu!ated means of exciting tile system is through tile application of a

prescribed voltage to the patches and this was the int)ul in the remaining examples (hy altering

the frequencies and magnitude, this voltage can be taih)red so as to evoke a desired system

rest)onse ). In the third and fourth examples, a numerically simulated multiple frequency,
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periodic voltagewasusedto initially excite the systemat,whichpoint the voltagewascut an{1

the system energy was allowed to begin decaying due to tile damping in the beam. In addition

t.o being more accurately si]nlda.tcd nutnerically, this also 1)roved to be a more effective means

of exciting high frequetwy responses in the system than was the acoustic excitathm. A short

(h|i'ation 1.riatwllar input was applied to the pa.tch in the final example to simulate an initial

volt, a,ge spi ke.

In the third examt)le , acceh'ra, tion values on the Imam were used as data, whereas voltage,

vallu,S (measlat'itlg a,cctnnltla, tcd strait+ in the l)ea, m) and voliage values it+ con+l)ination with

acoltstic t)resscn'(, valu(+s w(+r(' used as data in the fourth and fifth ('xampl(+s. In these exatnt)h,s,

it: was foutM i.hat when only a few system fr('quencies were excit('d (three or four), tilt' acct,l-

eraiitm dai.a was su[ficit,nily stmsiiive so as to permit etfective i)aramet(,r (,stimatiot_ whereas

highly accural.(, iuitial guesses were il(,('tlt'(t in or(h,r to use I)t,am (]ala containing o_lly strain

informal, ion (which qualitatively has the prol)(,rties of displacement data). By augjnent.ing tit('

stra.itl (tata. with t)rt'ssltrc tn('as|n't,n+(,l_ts, however, sufficient itffortnation was a<l(h'(l so a.s to

again lead to succ('ssful 1)aranlt,ttu ` ith,tltificatiotl with a ra.nge of initial values. ()tl l.h(, ()t.ht'r

hatut, tim (,xcitat.i()tl of la.rg(, nunlt)('r of system frt,(llmnt;i(,s through t.h(, sitmtlatt,d voltag,;(,

spike to tht, patch led to strain data which was sul[iciently "rich" st) as to permit sttccess

of tht+ tnetho(I while the intro(hlctiotl of pressure data led to a failure in the optimizal.i()n

routine (htt, to the very large nlltnl)er of frequencies in the pressur(' nl(,asurements, tlent't" t.[_("

sut'cess of the metho(t with stra.itJ mcasurt,nmttts cotnpt'isitlg parl. of tit(" data (h'l)t,tld(,(I l)artly

oil the tmml)er of ext'ii.e({ frt-quetlcies; for a. small ntnnber, the strain measureln(,nts had to be

sllt)pletnent(,d with accelera.ti(m or pressure values in ot'der to ensure t)aram(,ter convergence

for data containing any noise.
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